Mission Concepts for Titan Exploration

Thomas R. Spilker
International Planetary Probe Workshop 5
Bordeaux, France

2007 June 27

Topics

- Platform options for addressing Titan science
- Mission options
- Titan mission studies (and proposals) since Cassini/Huygens' arrival

Platform Options

Useful Platform Options

- First: platforms that are not particularly useful
 - Flyby spacecraft: Cassini has already done most of that
 - Surface rovers: not enough range to sample Titan's diversity
 - Example exception: precision-landed rover near a cryovolcano vent
- Orbiters
- Entry Probes
- Aircraft

- Lighter than air: balloons (superpressure, hot-air, wind-driven, engine-driven), blimps, dirigibles
- Heavier than air: drop sondes, gliders, airplanes, rotorcraft
- Landers
- Sea-craft
 - Buoys, boats (wind-driven, engine-driven)
 - Submarines

Orbiters

- Environments they can observe directly:
 - Saturn magnetosphere, Titan ionosphere
 - Fields & particles investigations
 - Titan exosphere & upper neutral atmosphere (eccentric orbit)
 - Composition: in situ (mass spec), remote sensing (UV occultations)
- Global mapping & topography of surface
 - morphology, geology, limited composition
 - IR mapping spectrometry, hi-resolution SAR, altimetry
- Radio science investigations
 - Gravity field: interior structure, gross geology (limited by altitude)
 - Occultations: atmospheric and ionospheric structure, inferred winds
- Useful data relay node for aerobots, landers, etc.
- Challenges
 - Orbit insertion: requires aerocapture, which needs a flight demo
 - Needs a significant RPS
 - Fuel requirements are within anticipated availability

Entry Probes

- Environments they can observe directly:
 - "Agnostosphere" (or "ignorosphere")
 - Composition, atmospheric structure
 - Stratosphere, troposphere
 - Composition, atmospheric structure & dynamics (winds)
 - Local haze layers and clouds, insolation
 - Surface
 - Descending below ~20-25 km, imaging resolution improves but coverage decreases (parafoil improves coverage)
 - Limited composition
- Challenges
 - Single probe does not sample Titan's diversity
 - Brief science mission; "snapshot"

Aircraft - 1

For the first Titan aerobot mission:

Heavier than air

- or -

Lighter than air?

- Stability & "safe mode": what happens if computer crashes?
 - Superpressure balloon: nothing; stable, stays put at design altitude
 - Hot-air balloon: stable; simple hardware controller can initiate ascent to safe altitude
 - Blimp/dirigible: stable; simple hardware controller can initiate ascent to safe altitude, but slower and lower than hot-air balloon
 - Airplane: marginally stable; neutralizing control inputs yields a stable configuration, but can lose much altitude before flight stability regained
 - Glider (parafoil?): similar to airplane, but short mission duration
 - Helicopter: unstable without active control inputs; crashes within a few seconds to a few minutes of computer loss

Looks like lighter than air wins out

Aircraft - 2

Comparison of lighter-than-air craft

Characteristic	Superpressure Balloon	Hot-air Balloon	Blimp/ Dirigible
Simplicity	Simplest	Simple	More Complex
Expected Lifetime	Year?	Many Years	Year?
Vertical Range	~ None	Near-Surface to 10-12 km	Near-Surface to ~2 km
Surface Sampling Capability	No	Yes	Yes
Hover Capability	No	No	Yes

Aircraft - 3

- Environments hot-air balloons or blimps can sample directly, over a wide variety of locales:
 - Lower troposphere
 - Composition, atmospheric structure & dynamics (winds, circulation)
 - Local clouds, insolation, meteorology
 - Surface-atmosphere interaction
 - Temporal variability (including seasonal for duration ≥~2-3 years)
 - Surface
 - Detailed composition of marginally- to precisely-targeted areas (mass spec w/sampler)
 - Local high-resolution imaging: morphology, topography, gross composition & distribution
 - Subsurface
 - Layering and structure (subsurface radar): geology, geologic history, buried structures (such as impact craters)
 - Lake-bottom topography, sedimentation styles
- Challenges
 - Autonomous control algorithms; low-T operations; deployment?

Landers

- Environments they can observe directly:
 - Near-surface troposphere
 - Meteorology: temperatures, pressures, humidities, local winds, clouds, precipitation
 - Surface
 - Detailed composition, texture of surface & shallow subsurface materials
 - Subsurface
 - Drilling: local layering of shallow subsurface; heat flow?
 - · Local ground-penetrating radar or active seismic
 - Interior
 - Seismic activity, interior structure (requires multiple simultaneous landers & natural seismic activity)
- Challenges
 - Limited area sampled; one lander does not sample Titan's diversity
 - Low-temperature operations
 - Precision landing?

Sea-craft

Arr, matey!

- Near-surface troposphere
 - Meteorology: temperatures, pressures, humidities, local winds, clouds, precipitation
- Liquid
 - Detailed composition, depth sounding
 - Wave heights, wavelengths, directions
 - Temperatures, temperature gradients, thermoclines
 - Evaporative loss rates
- Subsurface
 - Sub-bottom active seismic?
- Challenges
 - Thermal (staying warm)
 - Communications, if no orbiting relay

Mission Options

Mission Options for Titan Exploration

- A "mix-and-match" of elements
 - Different platforms treat different objectives
 - Some, but not excessive, overlap
 - Much complementarity, significant synergy
 - Can easily justify combining different platforms, or multiples of one type
 - A few caveats
 - Beware of "Just add a (favorite platform)"; costs can spiral
 - Huge synergy with an orbiter: multiply data volume from in situ platforms by a factor of 50 to 100 compared with direct-to-Earth downlink
 - Aerocapturing into Titan orbit (or at Titan into Saturn orbit) might require that your mission foot the bill for an aerocapture flight demonstration
- Getting to the Saturn system
 - Many ballistic or low-delta-V trajectories to Saturn using inner solar system gravity assists -- cruise durations 7-10 years
 - Some flexibility in choosing arrival parameters
 - Solar Electric Propulsion can increase mass capability and/or shorten cruise durations, but adds (currently) ~\$100M to mission cost

Low-Cost Titan Mission Options

"Billion-Dollar Box" Study Conclusions

Science Value, Cost and Risk assessments were synthesized to form the basis for conclusions regarding feasibility:

- No missions to Titan or Enceladus that achieve a sufficient increase in understanding beyond Cassini-Huygens, were found to fit within the cost cap of 1 billion dollars (FY' 06)
- Three of the missions studied have the potential to meet the cost cap but fall below the science guideline established for this study
 - Single Fly-By of Enceladus
 - Single Fly-By of Titan
 - Single Fly-By of Titan with Atmospheric entry Probe (Huygens-like)
- Even the lowest-cost mission option, without the science payload cost, has a minimum expected cost of ~\$800M, making it highly unlikely that unexplored approaches exist that achieve sufficient science value for \$1B
- All Titan and Enceladus missions that meet science guidelines require new technology development or flight validation

Titan Mission Studies Since C/H Arrival

- NASA "Vision Missions" study, J.I. Lunine (U Ariz) PI, JPL
 - Significant engineering study of surface sampling systems
- Univ. of Arizona/JPL study, "Titan Protobiological Explorer" (TiPEx)
 - Refinement of science objectives, payload priorities
 - Engineering studies of multi-element telecom, Montgolfiere design
- NASA/JPL "Billion Dollar Box" study
 - Ralph Lorenz (now of APL) lead of SDT
- NASA/APL/JPL Titan Flagship Mission study
 - Three science elements: orbiter, lander, aerobot
- European Cosmic Visions Program proposal, "TANDEM"
 - Led by Athena Coustenis (Obs. de Paris, Meudon)
 - Investigations at both Titan and Enceladus
 - Delivers a balloon to Titan

Any Questions?